본문 바로가기

분류 전체보기3586

새로운 방식으로 강화학습을 시도해 보기-4- 안녕하세요? 지난번 포스팅에서도 그러했지만, 이번 포스팅에서도 어떻게 된 일인지 수익모델의 발견에는 무언가가 좋지 않은 상황이 이어지고 있는 중 입니다. 이번 주 내내 이런 상황이 이어져서, 이게 ADF 테스트와 기계학습이 안 맞는 것인가 하는 생각이 들기도 하지만, 그래도 아직 알아볼 것은 많이 있다는 생각이 듭니다. 그래서 먼저 생각해 보았는 것은 위 스크린샷과 같은 그림입니다. 먼저 100원에 1주를 샀는데, 그 이후로 120분 동안 1원의 가격으로 떨어졌다면, 평균이 1.83원이 됩니다. 그런데 이후 90원에 팔면, 분명히 평균보다 더 높기는 높은데, 정작 손해를 보는 상황이 벌어지는 것 입니다. 먼저 previous_price라는 변수를 처음에는 0으로 설정을 합니다. 이 변수는 매수가 일어나면.. 2019. 4. 26.
새로운 방식으로 강화학습을 시도해 보기-3- 안녕하세요? 이래저래 상황이 좋지 않은 가운데, 아무튼 ADF 테스트를 적용한 것 자체는 좋았습니다만, 어째서 인지 모르겠습니다만, 연속해서 수익이 강화학습 기간 내내 나오지 않는 것을 확인할 수 있었습니다. 이래서는 상황이 좋지 않은데, 일단 상황타개를 위한 가지가지 시도를 하고 있습니다. 일단 지난번 포스팅 말미에 일말의 기대를 가지고서 한번 해 보기는 해 봤습니다만, 시간도 시간대로 많이 걸리고, 효과도 효과대로 없는 결과가 나왔습니다. 일단 10, 200, 600, 1000에포크 일때를 한번 비교해 보고 있습니다만, 어찌된 것인지 모르겠습니다만, 조금도 초반부터 수익이 전혀 나오지 않는 것을 볼 수 있습니다. 한번은 agent.py를 조작해서 해 보았더니, 이번ㅌ에는 위 스크린샷과 같이 주식을 보.. 2019. 4. 25.
새로운 방식으로 강화학습을 시도해 보기-2- 안녕하세요? 오후의 포스팅에서 어떻게 전반부 내용을 이야기 했다면, 지금의 포스팅에서ㅕ는 후반부의 내용을 이야기 하기 위해서 이 블로그에 글을 올립니다. 이번 포스팅에서는 이전 데이터의 평균 현재가를 구한 다음, 현재의 결정이 득점인지 감점인지를 따져 보고자 합니다. 이제 같은 작업을 매도와 관망해도 해주어야 하는데, 여기서 관망에는 아무런 액션도 취하지 않기 때문에 그냥 추가되는 보너스 값을 0으로 설정을 해 주었습니다. 그리고 나서 위 스크린샷과 같이, 그냥 delay_reward에 대입하는 것으로 하면, 그대로 값이 변해버리고 끝나기 때문에, 새로 추가된 값을 위 스크린샷과 같이 붙여주는 작업을 해 보아야 합니다. 일단 여기까지는 yellow operation을 작동시켜 보았을 때는 별 무리없이 돌.. 2019. 4. 24.
새로운 방식으로 강화학습을 시도해 보기 안녕하세요? 지난번 포스팅에서 계속해서 ADF test를 통과한 종목에 한해서 계속해서 강화학습을 시켜 보았지만, 전혀 수익을 내지 못하는 것을 확인할 수 있었습니다. 그래서 이번에는 한번 새로운 방법을 시도해 보고자 합니다. 일단 클래스와 클래스, py와 py파일 사이를 뛰어넘기 위한 변수를 만들기 위해서, 먼저 agent.py의 Agent클래스에서 첫 메서드가 시작하기도 전에 위 스크린샷처럼 빈 변수를 하나 만들어 줍니다. 그리고 나서 main.py에서는 agent.py의 Agent 클래스를 import해서, 이를 가지고 올 준비를 하도록 합니다. 이런 준비를 하는 이유는 아래에 나오게 됩니다. 일반적으로 생각하기에는 변수 = 다른 py파일의 변수 이런 식으로 가지고 오는 것만 생각했는데, 여기서는 .. 2019. 4. 24.