인공지능 주식투자141 드디어 해결된 오류와 그다지 기뻐할 것만도 아닌 결과 안녕하세요? 몇 포스팅 이전부터 계속해서 왜 인지 첫 주식 데이터에서 부터 결정을 하지 않는 에러가 보고가 되어 있었습니다. 그래서 이번에는 드디어 해결책을 찾아내는 데 성공했으며, 그 결과를 보여드리고자 합니다. 다만, 이 결과가 그렇게 까지 기뻐할 만한 결과만은 아니라는 점이 다소 아쉽기는 합니다. 먼저 인터넷상에 있는 RLTrader의 코드입니다. 이 코드에서는 자세히 보면 주식 데이터를 준비해서 datamanager.py에서 처리한 다음에 기간별로 자르고, 다음으로 학습 데이터 분리등이 일어납니다. 그런데 제 경우에는 반대로 먼저 기간별로 자르고 나서, datamanager.py에서 처리를 하는데, 이 때문에 문제가 생기는 것이 아닌가 하는 생각이 듭니다. 그래서 먼저 datamanager.py로.. 2019. 3. 4. 오류사냥을 위한 다양한 시도들과 실패 안녕하세요? 지난번에는 생각지도 못했던 오류가 실제로는 존재를 하고 있었고, 이 오류를 소 뒷걸음 치다가 쥐 잡은 격으로 잡는데 성공했습니다. 이번 포스팅에서는 메인 오류인 왜 처음 120개의 데이터에 대해서는 아무런 작업도 하지 않다가 이후에야 작업을 하는 지에 대해서 한번 그 원인을 알아보고, 해결책을 찾고자 합니다. 먼저 위 스크린샷처럼 agent.py에 있는 내용이 문제가 된 것이 아닌가 하는 생각이 들어서, 과거처럼 바꾸어 놓은 다음에 한번 강화학습에 들어가 봅니다. 2분도 되지 않는 시간이 걸려서 강화학습이 끝나는 것을 확인할 수 있기는 있었습니다. 그런데 나아지기는 커녕, 과거에 않 좋은 형태 그대로 나오는 것을 확인할 수 있었습니다. 다음으로는 위 스크린샷을 보시다 시피, 차트 데이터에다가.. 2019. 3. 3. 400에포크를 늘려서 하는 강화학습과 동시에 발견한 한가지 에러 안녕하세요? 지난번에 300에포크로 강화학습의 횟수를 늘려서 모델에 학습을 시켜 보았습니다만, 그렇게 결과는 좋지는 못했습니다. 그래서 이번에는 400으로 조심스럽게 올려보면서 한번 강화학습을 해 보는데, 문제는 그렇게 강화학습을 진행 시키는 동안에 한번 확인해 볼 것이 있어서 확인을 해 보는 동안 새로운 것을 하나 알게 되었습니다. 그래서 이번 포스팅에서 그 내용을 올리고자 합니다. 먼저 yellowoperation 프로젝트를 열고, 위 스크린샷에서 보이는 것처럼 400에포크로 설정을 한 다음에, 저장을 하고 구글 드라이브에 업로드해 봅니다. 그리고 나서 한번 강화학습에 들어가 봅니다. 다음으로 한번 과거의 데이터를 검색해 보았습니다. 그랬더니, 과거에는 위 스크린샷처럼 처음부터 모델이 제대로 결정을 .. 2019. 3. 2. 300에포크로 올려서 도전해본 수익모델 찾기 안녕하세요? 지난번 포스팅에서 약속드린 바와 같이, 일단 300에포크로 강화핛브의 횟수를 늘려본 다음에 한번 그 결과를 보고자 합니다. 다만 미리 말씀부터 드리자면, 지금은 딱히 이렇다 할만한 강화핛브으로 제대로 된 내용이 나오지는 않았습니다. 먼저 yellowoperation으로 가서, 위 스크린샷과 같이 전체 학습에 사용이 될 에포크의 숫자를 100에서 300으로 늘려 보도록 합니다. 첫번째 강화학습의 결과, 1시간 약 40분 정도 걸린 다음에 구글 코랩에서 강화학습이 완료가 된 것을 확인할 수 있었습니다. 일련의 과정을 거친 다음에, 총 5개의 강화학습이 완료가 된 것을 확인할 수 있었습니다. 다만 이 과정에서 모두 1시간 40분에서 2시간 가까이 걸린 것을 생각해 보면 참 많은 시간이 걸리기는 걸.. 2019. 3. 2. 이전 1 ··· 11 12 13 14 15 16 17 ··· 36 다음